Urgent surgical revascularization does not appear to be desirable in this context of spontaneous coronary dissection either

Urgent surgical revascularization does not appear to be desirable in this context of spontaneous coronary dissection either. spectacular results Lacosamide at 2 months, controlled by CTCA. strong class=”kwd-title” Keywords: Spontaneous coronary artery dissection, acute coronary syndromes, conservative management, case report Introduction Spontaneous coronary artery dissection (SCAD) is considered as a cause of acute coronary syndromes (ACS) of uncertain origin that mainly occurs in young women [1]. The association with fibromuscular dysplasia or pregnancy is common [2]. Chest pain is the most common chief complaint of SCAD, and the diagnosis is made by invasive coronary angiography (CA), computed tomography coronary angiography (CTCA), intravascular ultrasound (IVUS) and optical coherence tomography (OCT). There are 3 therapeutic options including conservative medical treatment, stenting and surgical revascularisation by coronary artery bypass grafting (CABG), but there is no consensus on treatment of SCAD which makes it difficult to manage. Patient and observation A 36-year-old woman, active smoker with history of Lacosamide an untreated dyslipidemia, was admitted to our department for a chest pain radiating in hemi-belt, in the two upper limbs and sometimes in the neck, occurring at rest, with an intermittent character and associated with nausea, palpitations, dyspnea and dry cough, without notion of fever or recent flu syndrome. The clinical examination being without abnormalities, an electrocardigram was performed and objectified diffuse microvoltage and fragmentation of the QRS complex in DIII and aVF leads with negative T wave in aVL lead. The troponin level was up to 8 times the normal value. At this step, the patient is diagnosed as a non ST elevation myocardial infarction (NSTEMI). At transthoracic echography (TTE), the left ventricle (LV) was undilated, non-hypertrophied with latero-apical dyskinesia, and LV ejection fraction (LVEF) at 50-55%, minimal central mitral regurgitation on normal mitral valves, normal right cavities, and there was no pericardial effusion. Coronary angiography (Figure 1) demonstrated an aspect evoking a spontaneous dissection of the distal left anterior descending artery (LAD) going back to the left main trunk as well as to the left circumflex artery (LCX). The flow on the LVA was thrombolysis in myocardial infarction (TIMI) Lacosamide grade 2-3 and slowed down at the level of the distal circumflex. The dissection was aggravated upon injection into the left main trunk with extensive dissection of the entire left coronary. Open in a separate window Figure 1 SCAD of LAD with extension to left main trunk and LCX at invasive coronary angiography The dissection was occlusive on the LCX and the flow was correct on the LAD. After a team consultation between intensive care cardiologists and cardiac surgeon, and considering clinical and hemodynamic stability, we decided to give medical treatment with a single antiplatelet agent without anticoagulant treatment because of the major risk of worsening the extension of the dissection by stenting. Urgent surgical revascularization does not appear to be desirable in this context of spontaneous coronary dissection either. We decided to respect the dissection, to treat with only aspirin and to keep the patient at the intensive care unit. The outcome was favorable, with progressive pain relief and a stable hemodynamic state. There was a clear elevation of troponin and creatine phosphokinase (CPK) levels, an inflammatory syndrome with considerable elevation of C-reactive protein and white blood cells, without evidence of bacterial infection, probably related to myocardial GCSF necrosis or viral disease, gradually regressive during hospitalization. On the rhythmic level, there was an initial ventricular hyperexcitability, leading to the introduction of beta-blockers with favorable course. The level of low-density lipoprotein (LDL) cholesterol in the blood was 1.80g/dl and atorvastatin was introduced. Discharge treatment included aspirin 75mg, atorvastatin 40mg and bisoprolol 5mg, and smoking was stopped. Computed tomography-coronary Lacosamide angiography (CTCA) realised after 2 months to assess healing showed a non-calcified coronary network and a complete resolution of the dissection (Figure 2, Figure 3). Open in a separate window Figure 2 resolution of SCAD at CTCA: LAD view Open in a separate window Figure 3 resolution of SCAD at CTCA: LCX view Discussion SCAD remains a rare cause of acute myocardial ischemia. It occurs in middle aged women in 80% of cases and more than 25% of these are in the peri-partum period, in the absence of coronary atherosclerosis and risk factors [1]. Generally, patients who may develop a SCAD have predisposing factors such as fibromuscular dysplasia (FMD), female gender, pregnancy-related factors, possibly hormonal therapy, mixed connective tissue disorders and inflammatory disorders [2]. SCAD is the result of a separation within the coronary artery wall caused by intramural haemorrhage made up from the development of an endothelial and intimal discontinuity or tearing, or from the primary disruption of a vasa vasorum micro-vessel leading to haemorrhage directly into the media,.